Ketamine induces apoptosis via the mitochondrial pathway in human lymphocytes and neuronal cells.

نویسندگان

  • S Braun
  • N Gaza
  • R Werdehausen
  • H Hermanns
  • I Bauer
  • M E Durieux
  • M W Hollmann
  • M F Stevens
چکیده

BACKGROUND Ketamine has been shown to have neurotoxic properties, when administered neuraxially. The mechanism of this local toxicity is still unknown. Therefore, we investigated the mechanism of cytotoxicity in different human cell lines in vitro. METHODS We incubated the following cell types for 24 h with increasing concentrations of S(+)-ketamine and racemic ketamine: (i) human Jurkat T-lymphoma cells overexpressing the antiapoptotic B-cell lymphoma 2 protein, (ii) cells deficient of caspase-9, caspase-8, or Fas-associated protein with death domain and parental cells, and (iii) neuroblastoma cells (SHEP). N-Methyl-d-aspartate (NMDA) receptors and caspase-3 cleavage were identified by immunoblotting. Cell viability and apoptotic cell death were evaluated flowcytometrically by Annexin V and 7-aminoactinomycin D double staining. Mitochondrial metabolic activity and caspase-3 activation were measured. RESULTS Ketamine, in a concentration-dependent manner, induced apoptosis in lymphocytes and neuroblastoma cell lines. Cell lines with alterations of the mitochondrial pathway of apoptosis were protected against ketamine-induced apoptosis, whereas alterations of the death receptor pathway did not reduce apoptosis. S(+)-Ketamine and racemic ketamine induced the same percentage of cell death in Jurkat cells, whereas in neuroblastoma cells, S(+)-ketamine was slightly less toxic. CONCLUSIONS Ketamine at millimolar concentrations induces apoptosis via the mitochondrial pathway, independent of death receptor signalling. At higher concentrations necrosis is the predominant mechanism. Less toxicity of S(+)-ketamine was observed in neuroblastoma cells, but this difference was minor and therefore unlikely to be mediated via the NMDA receptor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Schizophrenia Induces Oxidative Stress and Cytochrome C Release in Isolated Rat Brain Mitochondria: a Possible Pathway for Induction of Apoptosis and Neurodegeneration

Schizophrenia is a chronic and often debilitating illness which affects about 1% of the world population. Some reagents have been used to simulate schizophrenic disorders in laboratory animals, such as amphetamine and ketamine. Previous studies have suggested that reactive oxygen species (ROS) production, reduced levels of ATP, mitochondrial dysfunction and apoptosis are involved in the pathoph...

متن کامل

Schizophrenia Induces Oxidative Stress and Cytochrome C Release in Isolated Rat Brain Mitochondria: a Possible Pathway for Induction of Apoptosis and Neurodegeneration

Schizophrenia is a chronic and often debilitating illness which affects about 1% of the world population. Some reagents have been used to simulate schizophrenic disorders in laboratory animals, such as amphetamine and ketamine. Previous studies have suggested that reactive oxygen species (ROS) production, reduced levels of ATP, mitochondrial dysfunction and apoptosis are involved in the pathoph...

متن کامل

Econazole Nitrate Induces Apoptosis in MCF-7 Cells via Mitochondrial and Caspase Pathways

Econazole nitrate (EN), a synthetic compound, is now in use as a routine antifungal drug. EN was shown to have antitumor effect, the tumor cell killing mechanisms, however, remain unclear. In this research, the apoptosis-inducing effect of EN on MCF-7 cells was investigated. The results showed that EN inhibited the proliferation of MCF-7 cells in a time- and dose-dependent manner by MTT method ...

متن کامل

Econazole Nitrate Induces Apoptosis in MCF-7 Cells via Mitochondrial and Caspase Pathways

Econazole nitrate (EN), a synthetic compound, is now in use as a routine antifungal drug. EN was shown to have antitumor effect, the tumor cell killing mechanisms, however, remain unclear. In this research, the apoptosis-inducing effect of EN on MCF-7 cells was investigated. The results showed that EN inhibited the proliferation of MCF-7 cells in a time- and dose-dependent manner by MTT method ...

متن کامل

Perfluorooctanesulfonate (PFOS) Induces Apoptosis Signaling and Proteolysis in Human Lymphocytes through ROS Mediated Mitochondrial Dysfunction and Lysosomal Membrane Labialization

Perfluorinated compounds (PFCs) such as perfluorooctanesulfonate (PFOS) are stable chemicals that accumulate in biological matrix. Toxicity of these compounds including immunotoxicity has been demonstrated in experimental models and wildlife. Although limited number of studies examined the effects of PFOS on human lymphocytes but so far no research has investigated the complete mechanisms of PF...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • British journal of anaesthesia

دوره 105 3  شماره 

صفحات  -

تاریخ انتشار 2010